

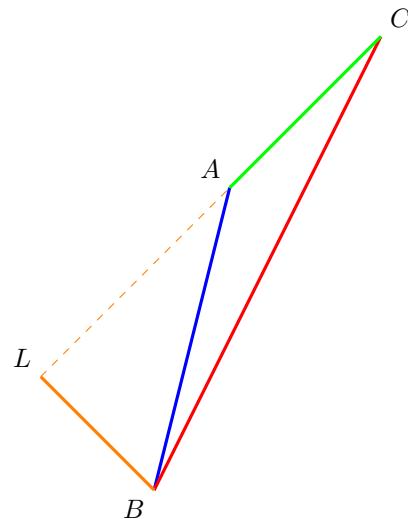
EQUATION OF AN ALTITUDE

ALTITUDE of a triangle:

- a line segment from one vertex that is at right angles (90°) to the opposite side
- for example, in $\triangle ABC$ below, the altitude from vertex A is the line segment AL .

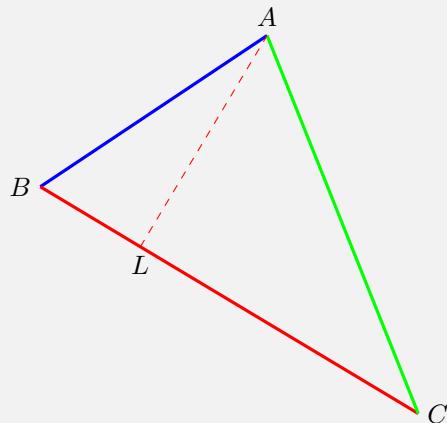


- sometimes the opposite side has to be extended before the altitude can meet it at right angles. For example, in $\triangle ABC$ below, the altitude from vertex B is the orange line segment BL. Notice how side CA was extended.



- the three altitudes of a triangle all meet at a point called the orthocenter, usually denoted by H .
- finding the equation of an altitude is easy. For example, for the altitude from vertex A:
 - obtain the **slope** of the opposite side (side BC in this case), then find its **negative reciprocal**;
 - use the **coordinates of vertex A** and the **negative reciprocal slope** in $y = mx + b$, where:
 - * m is the **negative reciprocal slope**;
 - * x and y come from the **coordinates of vertex A**.
 - easier **DONE** than **SAID**.

EXAMPLE 1: $\triangle ABC$ has vertices at $A(0, 3)$, $B(-3, 1)$, $C(2, -2)$. Find the equation of the altitude from vertex A .



- the slope of side BC is $\frac{-2-1}{2-(-3)} = -\frac{3}{5}$, and its negative reciprocal is $\frac{5}{3}$. So we have $m = \frac{5}{3}$.
- the coordinates of vertex $A(0, 3)$ are $x = 0$ and $y = 3$. Together with the value of m from above, the straight line equation $y = mx + b$ becomes:

$$\begin{aligned} y &= mx + b \\ 3 &= \frac{5}{3}(0) + b \\ 3 &= b \end{aligned}$$

- therefore, the equation of the altitude from vertex A is $y = \frac{5}{3}x + 3$. That's line AL above.

EXAMPLE 2: $\triangle ABC$ has vertices at $A(-2, -4)$, $B(1, 5)$, $C(3, -4)$. Find the equation of the altitude from vertex B .

- the slope of side AC is **ZERO**, 0. So the altitude through vertex B has an **undefined slope**.
- any line with an **undefined slope** has an equation of the form $x = \text{constant}$. In our case, $x = 1$ (the x -coordinate of vertex B).
- therefore, the equation of the altitude from vertex B is $x = 1$.

EXAMPLE 3: $\triangle ABC$ has vertices at $A(0, 6)$, $B(0, -5)$, $C(3, 2)$. Find the **equation of the altitude from vertex C** .

- the slope of side AB is **undefined**. So the altitude through vertex C has a **zero slope**.
- any line with an **zero slope** has an equation of the form $y = \text{constant}$. In our case, $y = 2$ (the y -coordinate of vertex C).
- therefore, the **equation of the altitude from vertex C** is $y = 2$.

EXAMPLE 4: Find the **orthocenter** of $\triangle ABC$ with vertices at $A(0, 0)$, $B(1, 4)$, $C(3, 6)$.

- we need to find the equations of any two altitudes, and then solve the two equations simultaneously.
- let's start with the **equation of the altitude from vertex A** :
 - the **slope of side BC** is $\frac{6-4}{3-1} = \frac{2}{2} = 1$, and its **negative reciprocal** is -1 . Take $m = -1$.
 - the **coordinates of vertex $A(0, 0)$** are $x = 0$ and $y = 0$. Together with the value of m , the straight line equation $y = mx + b$ becomes

$$0 = -1(0) + b \implies b = 0$$

– so we get $y = -x$ as the **equation of the altitude from A** .

- now let's find the **equation of the altitude from vertex B** :
 - the **slope of side AC** is $\frac{6-0}{3-0} = 2$, and its **negative reciprocal** is $-\frac{1}{2}$. Take $m = -\frac{1}{2}$.
 - the **coordinates of vertex $B(1, 4)$** are $x = 1$ and $y = 4$. Together with $m = -\frac{1}{2}$, the straight line equation $y = mx + b$ becomes:

$$4 = -\frac{1}{2}(1) + b \implies 4 + \frac{1}{2} = b \implies \frac{9}{2} = b$$

– so we get $y = -\frac{1}{2}x + \frac{9}{2}$ as the **equation of the altitude from vertex B** .

- finally we solve the two altitude equations (namely, $y = -x$ and $y = -\frac{1}{2}x + \frac{9}{2}$) simultaneously:

$$-x = -\frac{1}{2}x + \frac{9}{2} \implies -2x = -x + 9 \implies x = -9 \quad \therefore y = -x = -(-9) = 9$$

- **conclusion:** the **orthocenter** is located at $(-9, 9)$.

EXAMPLE 5: Find the **orthocenter** of $\triangle ABC$ with vertices at $A(2, 5)$, $B(-2, 0)$, $C(4, 1)$.

- as before, we find the equations of any two altitudes, and then solve the resulting system of linear equations.

- let's start with the **equation of the altitude from vertex A**:

- the slope of side BC is $\frac{1-0}{4-(-2)} = \frac{1}{6}$, and its **negative reciprocal** is -6 . Take $m = -6$, to be used in the straight line equation $y = mx + b$.
- the coordinates of vertex $A(2, 5)$ are $x = 2$ and $y = 5$. In the straight line equation $y = mx + b$, we have:

$$\begin{aligned} y &= mx + b \\ 5 &= -6(2) + b \\ 5 &= -12 + b \\ 17 &= b \end{aligned}$$

- the altitude from vertex A has equation $y = -6x + 17$

- next, let's find the **equation of the altitude from vertex B**:

- the slope of side AC is $\frac{5-1}{2-4} = -2$, and its **negative reciprocal** is $\frac{1}{2}$. Take $m = \frac{1}{2}$, to be used in the straight line equation $y = mx + b$.
- the coordinates of vertex $B(-2, 0)$ are $x = -2$ and $y = 0$. Together with $m = \frac{1}{2}$, the straight line equation $y = mx + b$ becomes:

$$\begin{aligned} y &= mx + b \\ 0 &= \frac{1}{2}(-2) + b \\ 0 &= -1 + b \\ 1 &= b \end{aligned}$$

- the altitude from vertex B has equation $y = \frac{1}{2}x + 1$.

- finally, we solve the linear system $y = -6x + 17$, $y = \frac{1}{2}x + 1$ to determine the **orthocenter**:

$$\begin{aligned} -6x + 17 &= \frac{1}{2}x + 1 \\ -12x + 34 &= x + 2 \\ -13x &= -32 \\ \therefore x &= \frac{32}{13} \\ &\dots \\ y &= \frac{1}{2}x + 2 \\ &= \frac{1}{2} \left(\frac{32}{13} \right) + 1 \\ &= \frac{16}{13} + 1 \\ &= \frac{29}{13} \end{aligned}$$

- the **orthocenter** is at $(\frac{32}{13}, \frac{29}{13})$.

